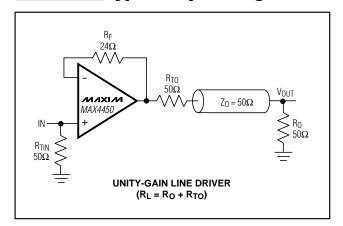
General Description

Applications


The MAX4450 single and MAX4451 dual op amps are unity-gain-stable devices that combine high-speed performance with Rail-to-Rail® outputs. Both devices operate from a +4.5V to +11V single supply or from $\pm 2.25V$ to $\pm 5.5V$ dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).

The MAX4450/MAX4451 require only 6.5mA of quiescent supply current while achieving a 210MHz -3dB bandwidth and a 485V/µs slew rate. Both devices are an excellent solution in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instrumentation.

The MAX4450 is available in the ultra-small 5-pin SC70 package, while the MAX4451 is available in a space-saving 8-pin SOT23.

Set-Top Boxes Surveillance Video Systems Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface

- CCD Imaging Systems
- Video Routing and Switching Systems
- Digital Cameras

Typical Operating Circuit

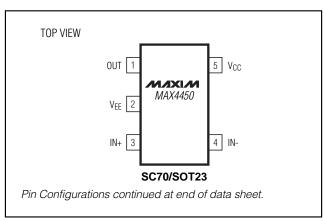
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800 For small orders, phone 1-800-835-8769.

Features

- Ultra-Small SC70-5, SOT23-5, and SOT23-8 Packages
- + Low Cost
- High Speed 210MHz -3dB Bandwidth 55MHz 0.1dB Gain Flatness 485V/µs Slew Rate
- Single +4.5V to +11V Operation
- Rail-to-Rail Outputs
- ✤ Input Common-Mode Range Extends Beyond VEE
- Low Differential Gain/Phase: 0.02%/0.08°
- Low Distortion at 5MHz


 -65dBc SFDR
 -63dB Total Harmonic Distortion
- + High Output Drive: ±80mA

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK	
MAX4450EXK-T	-40°C to +85°C	5 SC70-5	AAA	
MAX4450EUK-T	-40°C to +85°C	5 SOT23-5	ADKP	
MAX4451EKA-T*	-40°C to +85°C	8 SOT23-8	AAAA	
MAX4451ESA*	-40°C to +85°C	8 SO	—	

*Future product—contact factory for availability.

Pin Configurations

ABSOLUTE MAXIMUM RATINGS

8-Pin SOT23-8 (derate 5.26mW/°C above +70°C).....421mW 8-Pin SO (derate 5.9mW/°C above +70°C)......471mW Operating Temperature Range-40°C to +85°C Storage Temperature Range-65°C to +150°C Lead Temperature (soldering, 10sec).....+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

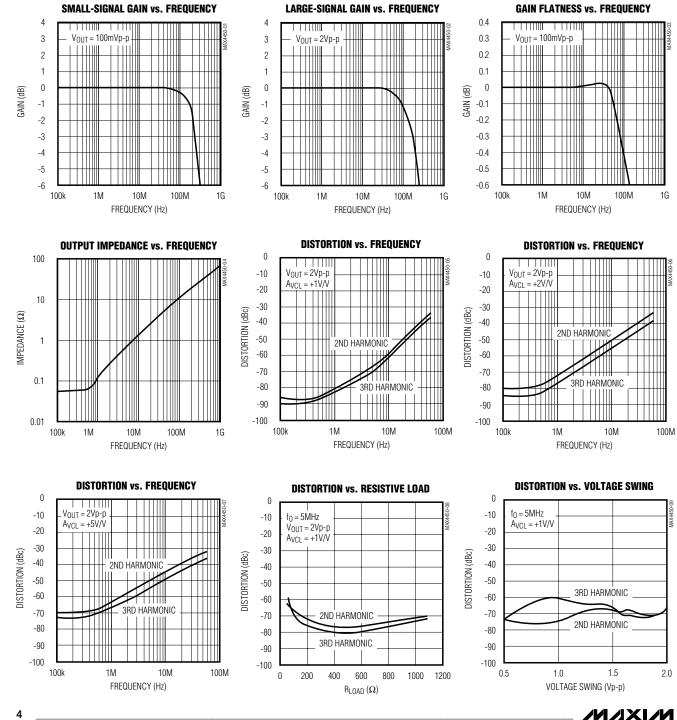
(VCC = +5V, VEE = 0, R_L = ∞ to VCC/2, V_{OUT} = VCC/2, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMRR	V _{EE} - 0.20		V _{CC} - 2.25	V	
Input Offset Voltage (Note 2)	Vos				4	26	mV
Input Offset Voltage Temperature Coefficient	TC _{VOS}				8		µV/∘C
Input Bias Current	IB	(Note 2)			6.5	20	μA
Input Offset Current	los	(Note 2)			0.5	4	μA
Input Resistance	Duv	Differential mode (-1V	$\leq V_{IN} \leq +1V)$		70		kΩ
Input Resistance	R _{IN}	Common mode (-0.2V	$\leq V_{CM} \leq +2.75V)$		3		MΩ
Common-Mode Rejection Ratio	CMRR	$(V_{EE} - 0.2V) \le V_{CM} \le (V_{EE} - 0.2V)$	V _{CC} - 2.25V)	70	95		dB
	Avol	$0.25V \le V_{OUT} \le 4.75V$, $R_L = 2k\Omega$	50	60		
Open-Loop Gain (Note 2)		$0.5V \le V_{OUT} \le 4.5V, R_L = 150\Omega$		48	58		dB
		$1.0V \le V_{OUT} \le 4V, R_{L} \le$	= 50Ω		57		
Output Voltage Swing	Vout	$R_L = 2k\Omega$	V _{CC} - V _{OH}		0.05	200	- mV
			V _{OL} - V _{EE}		0.05	150	
		$R_L = 150\Omega$	V _{CC} - V _{OH}		0.30	500	
			Vol - Vee		0.25	800	
(Note 2)		$R_L = 75\Omega$	V _{CC} - V _{OH}		0.5	800	
			V _{OL} - V _{EE}		0.5	1.3	
		$R_L = 75\Omega$ to ground	Vcc - Vон		1.0	1.5	
		$n_{\rm L} = 7522$ to ground	V _{OL} - V _{EE}		0.025	0.05]
Output Current	Ιουτ	$R_L = 20\Omega$ to V _{CC} or V _{EE}		±40	±80		mA
Output Short-Circuit Current	I _{SC}	Sinking or sourcing			±120		mA
Open-Loop Output Resistance	Rout				8		Ω
Power-Supply Rejection Ratio	PSRR	$V_{CC} = 5V, V_{EE} = 0, V_{CM} = 2V$		46	62		dB
(Note 3)		$V_{CC} = 5V, V_{EE} = -5V, V_{CM} = 0$		54	69		
Operating Supply-Voltage Range	Vs	VCC to VEE		4.5		11.0	V
Quiescent Supply Current (per amplifier)	IS				6.5	9.0	mA

AC ELECTRICAL CHARACTERISTICS

(VCC = +5V, VEE = 0, VCM = +2.5V, RF = 24 Ω , RL = 100 Ω to VCC/2, VOUT = VCC/2, AvcL = +1V/V, TA = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Small-Signal -3dB Bandwidth	BWSS	V _{OUT} = 100mVp-p		210		MHz		
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2Vp-p		175		MHz		
Bandwidth for 0.1dB Gain Flatness	BW _{0.1dB}	V _{OUT} = 100mVp-p			55		MHz	
Slew Rate	SR	V _{OUT} = 2V step		485			V/µs	
Settling Time to 0.1%	ts	V _{OUT} = 2V step			16		ns	
Rise/Fall Time	t _R , t _F	V _{OUT} = 100mVp-p			4		ns	
Spurious-Free Dynamic Range	SFDR	fc = 5MHz, V _{OUT} = 2Vp-p			-65		dBc	
Harmonic Distortion	HD	f _C = 5MHz, V _{OUT} = 2Vp-p	2nd harmonic		-65		dBc	
			3rd harmonic		-58			
			Total harmonic distortion		-63			
Two-Tone, Third-Order Intermodulation Distortion	IP3	f1 = 4.7MHz, f2 = 4.8MHz, V _{OUT} = 1Vp-p			66		dBc	
Input 1dB Compression Point		$f_{C} = 10MHz, A_{VCL} = +2V/V$			14		dBm	
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$		0.08		degrees		
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$		0.02		%		
Input Noise-Voltage Density	en	f = 10kHz		10		nV/√Hz		
Input Noise-Current Density	in	f = 10kHz			1.8		pA/√Hz	
Input Capacitance	CIN				1		pF	
Output Impedance	Zout	f = 10MHz		1.5		Ω		

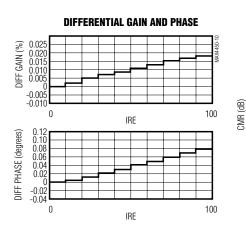

Note 1: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design. **Note 2:** Tested with V_{CM} = +2.5V.

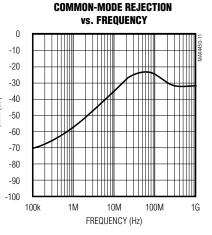
Note 3: PSR for single +5V supply tested with $V_{EE} = 0$, $V_{CC} = +4.5V$ to +5.5V; for dual ±5V supply tested with $V_{EE} = -4.5V$ to -5.5V, $V_{CC} = +4.5V$ to +5.5V.

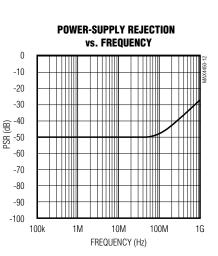
 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

MAX4450

Typical Operating Characteristics

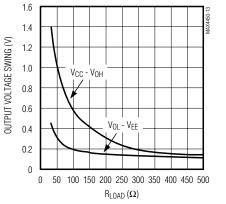


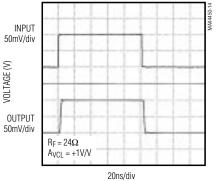

MAX4450/MAX4451


_Typical Operating Characteristics (continued)

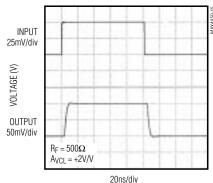
 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

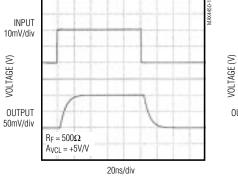
MAX4450

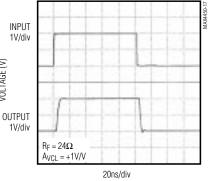


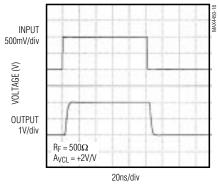


MAX4450/MAX4451

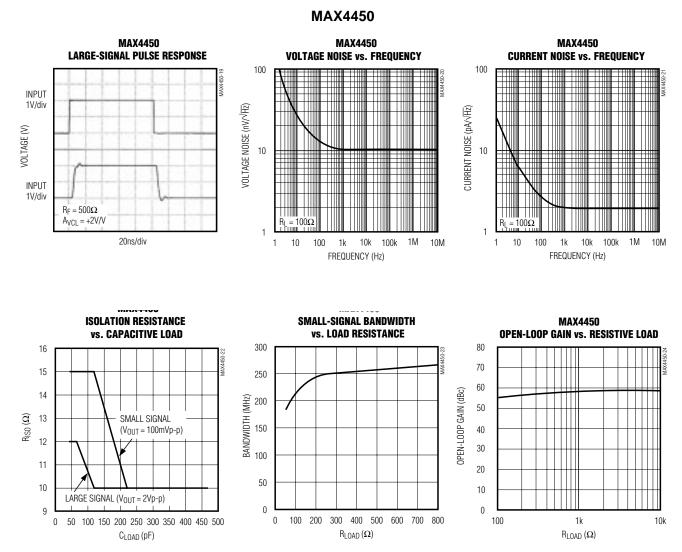



SMALL-SIGNAL PULSE RESPONSE


SMALL-SIGNAL PULSE RESPONSE


SMALL-SIGNAL PULSE RESPONSE

LARGE-SIGNAL PULSE RESPONSE



LARGE-SIGNAL PULSE RESPONSE

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

MAX4450/MAX4451

PIN							
MAX4450	MAX4451	NAME	FUNCTION				
1	_	OUT	Amplifier Output				
2	4	VEE	Negative Power Supply or Ground (in single- supply operation)				
3		IN+	Noninverting Input				
4		IN-	Inverting Input				
5	8	Vcc	Positive Power Supply				
_	1	OUTA	Amplifier A Output				
	2	INA-	Amplifier A Inverting Input				
	3	INA+	Amplifier A Noninverting Input				
_	7	OUTB	Amplifier B Output				
	6	INB-	Amplifier B Inverting Input				
_	5	INB+	Amplifier B Noninverting Input				

Pin Description

Detailed Description

The MAX4450/MAX4451 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 485V/µs slew rates and 210MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

The output voltage swings to within 55mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ± 80 mA drive capability, while constraining total supply current to less than 9mA. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail.

Applications Information

Choosing Resistor Values

Unity-Gain Configuration

The MAX4450/MAX4451 are internally compensated for unity gain. When configured for unity gain, the devices

require a 24Ω resistor (R_F) in series with the feedback path. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Inverting and Noninverting Configurations Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration ($R_F = R_G$) using 1k Ω resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1k\Omega$ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor. Table 1 lists suggested feedback and gain resistors, and bandwidths for several gain values in the configurations shown in Figures 1a and 1b.

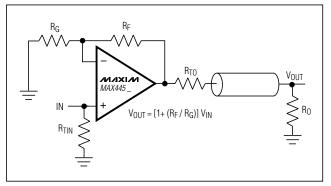


Figure 1a. Noninverting Gain Configuration

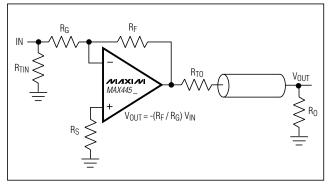


Figure 1b. Inverting Gain Configuration

M/XI/M

COMPONENT		GAIN (V/V)								
	+1	-1	+2	-2	+5	-5	+10	-10	+25	-25
$R_F(\Omega)$	24	500	500	500	500	500	500	500	500	1200
R _G (Ω)	~~~~	500	500	250	124	100	56	50	20	50
R _S (Ω)	_	0	_	0	_	0	_	0	_	0
R _{TIN} (Ω)	49.9	56	49.9	62	49.9	100	49.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	49.9	∞
R _{TO} (Ω)	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9
Small-Signal -3dB Bandwidth (MHz)	210	100	95	50	25	25	11	15	5	10

Table 1. Recommended Component Values

Note: $R_L = R_O + R_{TO}$; R_{TIN} and R_{TO} are calculated for 50 Ω applications. For 75 Ω systems, $R_{TO} = 75\Omega$; calculate R_{TIN} from the following equation:

$$R_{\text{TIN}} = \frac{75}{1 - \frac{75}{R_{\text{G}}}} \Omega$$

Layout and Power-Supply Bypassing

These amplifiers operate from a single +4.5V to +11V power supply or from dual $\pm 2.25V$ to $\pm 5.5V$ supplies. For single-supply operation, bypass V_{CC} to ground with a 0.1µF capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.

- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from (VEE - 200mV) to (VCC - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.

The output swings to within 55mV of either powersupply rail with a $2k\Omega$ load. The input ground sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95Vp-p and the output can swing 4.9Vp-p with minimal distortion.

///XI//

Output Capacitive Loading and Stability

The MAX4450/MAX4451 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the optimal isolation resistor (Rs) vs. capacitive load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 27 Ω isolation resistor on closed-loop response.

Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

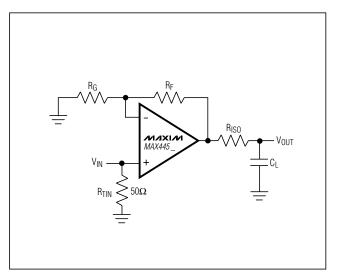


Figure 2. Driving a Capacitive Load Through an Isolation Resistor

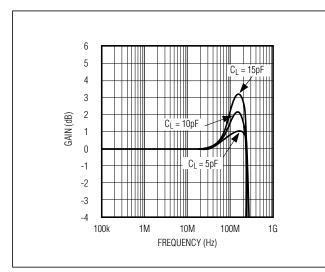


Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

/N/XI/N

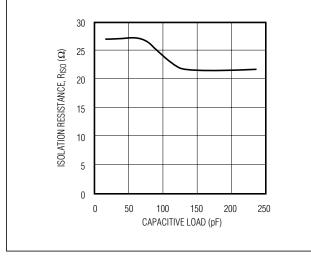
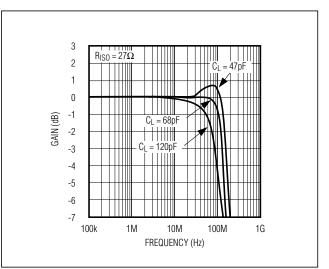
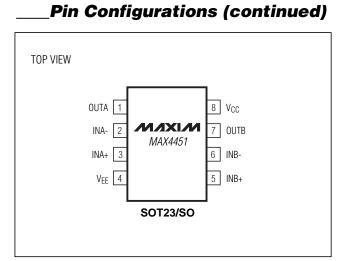
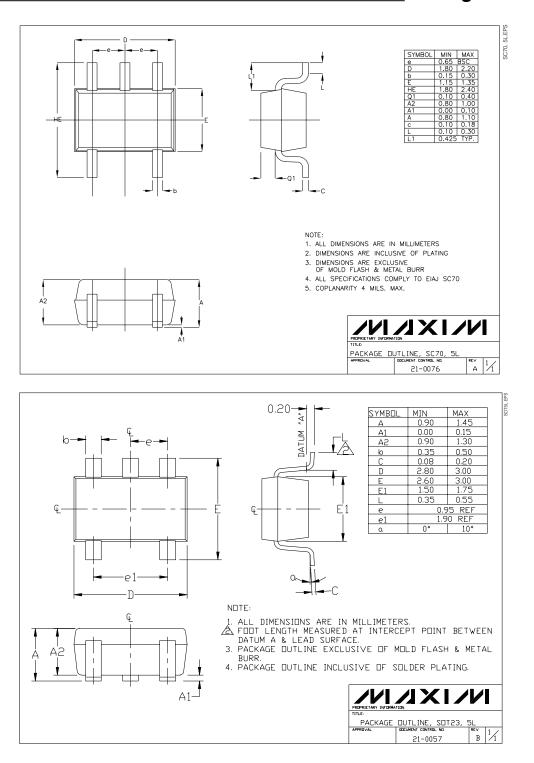
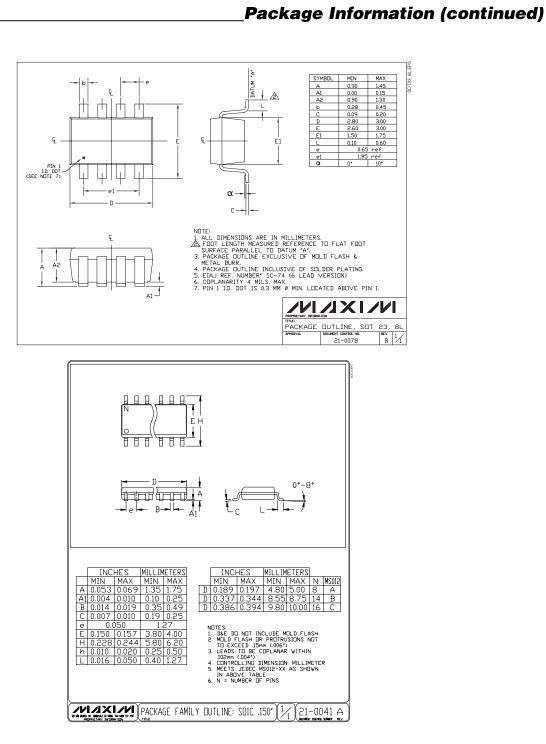


Figure 3. Capacitive Load vs. Isolation Resistance


Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27 Ω Isolation Resistor


_Chip Information

MAX4550 TRANSISTOR COUNT: 86 MAX4551 TRANSISTOR COUNT: 170 SUBSTRATE CONNECTED TO V_{EE}.

Package Information

MAX4450/MAX4451

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

MAX4450/MAX4451

___Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.